Template:Ballspellchart: Difference between revisions
Jump to navigation
Jump to search
VANKRASN39 (talk | contribs) m (table alignment) |
(Make MOC reference more obvious. Use fixed-width table alignment.) |
||
Line 1: | Line 1: | ||
{{{2|===Potential Splash Targets===}}} |
{{{2|===Potential Splash Targets===}}} |
||
With all ball spells, the number of targets hit by the splash effect is determined by the '''smaller number''' of {{mono|(X + BONUS)}} and {{mono|(Y + MOC ranks)}}, where {{mono|X}} is a random number from 0 to 8, and {{mono|Y}} is a random number from 0 to {{mono|(X + BONUS)}}, and {{mono|BONUS}} = {{mono|[1 + sqrt(8 * Appropriate Lore Ranks - 7)] ÷ 2}}. Thus, training in {{{1}}} adds directly to both of the totals from which the smaller number is chosen. |
|||
The number of targets hit by a ball spell is determined by the following calculation using {{{1}}} and Multi Opponent Combat (MOC): |
|||
⚫ | |||
!style="text-align:right;"|{{{1}}} ranks||1||2||4||7||11||16||22||29||37||46||56 |
|||
*Lore Skill Modifier = (1 + {{sqrt|8 * [{{{1}}} Ranks] - 7}}) / 2 |
|||
*First Roll is a random number from 0 to 8 |
|||
*Second Roll is a random number from 0 to [First Roll + Lore Skill Modifier] |
|||
*The number of targets is the '''smaller number''' of [First Roll + Lore Skill Modifier] and [Second Roll + MOC Ranks]. |
|||
(As such, training in {{{1}}} contributes to both of the values from which the smaller number is chosen.) |
|||
⚫ | |||
|- |
|- |
||
! style="text-align:right; width:200px;" | {{{1}}} ranks |
|||
! 0 |
|||
! 1 |
|||
! 2 |
|||
! 4 |
|||
! 7 |
|||
! 11 |
|||
! 16 |
|||
! 22 |
|||
! 29 |
|||
! 37 |
|||
! 46 |
|||
! 56 |
|||
|- |
|- |
||
! style="text-align:right;" | ''Possible'' additional splashes |
|||
|colspan="12"| |
|||
| 0 |
|||
| 1 |
|||
| 2 |
|||
| 3 |
|||
| 4 |
|||
| 5 |
|||
| 6 |
|||
| 7 |
|||
| 8 |
|||
| 9 |
|||
| 10 |
|||
| 11 |
|||
|} |
|||
{| class="wikitable" style="text-align:center; width: 640px; table-layout: fixed; margin-left: 10px;" |
|||
|- |
|- |
||
!style="text-align:right;"|{{{1}}} ranks |
! style="text-align:right; width:200px;" | {{{1}}} ranks |
||
! 67 |
|||
! 79 |
|||
! 92 |
|||
! 106 |
|||
! 121 |
|||
! 137 |
|||
! 154 |
|||
! 172 |
|||
! 191 |
|||
! 211 |
|||
! 232 |
|||
|- |
|- |
||
! style="text-align:right;" | ''Possible'' additional splashes |
|||
| 12 |
|||
| 13 |
|||
| 14 |
|||
| 15 |
|||
| 16 |
|||
| 17 |
|||
| 18 |
|||
| 19 |
|||
| 20 |
|||
| 21 |
|||
| 22 |
|||
|}<noinclude> |
|}<noinclude> |
||
Revision as of 14:50, 5 June 2018
Potential Splash Targets
The number of targets hit by a ball spell is determined by the following calculation using {{{1}}} and Multi Opponent Combat (MOC):
- Lore Skill Modifier = (1 + √8 * [{{{1}}} Ranks] - 7) / 2
- First Roll is a random number from 0 to 8
- Second Roll is a random number from 0 to [First Roll + Lore Skill Modifier]
- The number of targets is the smaller number of [First Roll + Lore Skill Modifier] and [Second Roll + MOC Ranks].
(As such, training in {{{1}}} contributes to both of the values from which the smaller number is chosen.)
{{{1}}} ranks | 0 | 1 | 2 | 4 | 7 | 11 | 16 | 22 | 29 | 37 | 46 | 56 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Possible additional splashes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
{{{1}}} ranks | 67 | 79 | 92 | 106 | 121 | 137 | 154 | 172 | 191 | 211 | 232 |
---|---|---|---|---|---|---|---|---|---|---|---|
Possible additional splashes | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |