Don't forget: You can log in with your Play.net account

Template:Ballspellchart: Difference between revisions

The official GemStone IV encyclopedia.
Jump to navigation Jump to search
mNo edit summary
(Expanded lore benefit chart to cover current highest possible lore training)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{{2|===Potential Splash Targets===}}}
{{{2|===Potential Splash Targets===}}}
With all ball spells, the number of targets hit by the splash effect is determined by the '''smaller number''' of {{mono|(X + BONUS)}} and {{mono|(Y + MOC ranks)}}, where {{mono|X}} is a random number from 0 to 8, and {{mono|Y}} is a random number from 0 to {{mono|(X + BONUS)}}, and {{mono|BONUS}} = {{mono|[1 + sqrt(8 * Appropriate Lore Ranks - 7)] ÷ 2}}. Thus, training in {{{1}}} adds directly to both of the totals from which the smaller number is chosen.


The number of targets hit by a ball spell is determined by the following calculation using {{{1}}} and Multi Opponent Combat (MOC):
:{| {{prettytable}} align="center"

!align="right"|{{{1}}} ranks||1||2||4||7||11||16||22||29||37||46||56||67||79||92||106||121||137||154||172||191||211||232
*Lore Skill Modifier = (1 + {{sqrt|8 * [{{{1}}} Ranks] - 7}}) / 2
*First Roll is a random number from 0 to 8
*Second Roll is a random number from 0 to [First Roll + Lore Skill Modifier]
*The number of targets is the '''smaller number''' of [First Roll + Lore Skill Modifier] and [Second Roll + MOC Ranks].

(As such, training in {{{1}}} contributes to both of the values from which the smaller number is chosen.)

{| style="table-layout: fixed; margin-left: 10px;"
|
{| class="wikitable" style="text-align:center; width:100%;"
|-
! style="text-align:right;" | {{{1}}} ranks
! 0
! 1
! 2
! 4
! 7
! 11
! 16
! 22
! 29
! 37
! 46
! 56
! 67
! 79
! 92
|-
! style="text-align:right;" | ''Possible'' additional splashes
| 0
| 1
| 2
| 3
| 4
| 5
| 6
| 7
| 8
| 9
| 10
| 11
| 12
| 13
| 14
|}
{| class="wikitable" style="text-align:center; width:100%"
|-
! style="text-align:right;" | {{{1}}} ranks
! 106
! 121
! 137
! 154
! 172
! 191
! 211
! 232
! 254
! 277
! 301
|-
|-
|align="right"|'''Possible''' additional splashes||1||2||3||4||5||6||7||8||9||10||11||12||13||14||15||16||17||18||19||20||21||22
! style="text-align:right;" | ''Possible'' additional splashes
| 15
| 16
| 17
| 18
| 19
| 20
| 21
| 22
| 23
| 24
| 25
|}
|}<noinclude>
|}<noinclude>



Latest revision as of 14:26, 22 February 2025

Potential Splash Targets

The number of targets hit by a ball spell is determined by the following calculation using {{{1}}} and Multi Opponent Combat (MOC):

  • Lore Skill Modifier = (1 + √8 * [{{{1}}} Ranks] - 7) / 2
  • First Roll is a random number from 0 to 8
  • Second Roll is a random number from 0 to [First Roll + Lore Skill Modifier]
  • The number of targets is the smaller number of [First Roll + Lore Skill Modifier] and [Second Roll + MOC Ranks].

(As such, training in {{{1}}} contributes to both of the values from which the smaller number is chosen.)

{{{1}}} ranks 0 1 2 4 7 11 16 22 29 37 46 56 67 79 92
Possible additional splashes 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
{{{1}}} ranks 106 121 137 154 172 191 211 232 254 277 301
Possible additional splashes 15 16 17 18 19 20 21 22 23 24 25