Talk:Summation chart: Difference between revisions

The official GemStone IV encyclopedia.
Jump to navigation Jump to search
(proposed math code)
 
mNo edit summary
Line 3: Line 3:


<div {{prettydiv|margin-right=70%}}>'''n = trunc[ 1-σ + sqrt[(σ-1)^2+2r] ]'''</div>
<div {{prettydiv|margin-right=70%}}>'''n = trunc[ 1-σ + sqrt[(σ-1)^2+2r] ]'''</div>
{{Equation box|<math>\mathrm{n = \biggl\lfloor 1-\sigma + \sqrt{(\sigma - 1)^2 + 2r)} \biggr\rfloor}</math>}}
{{Equation box|<math>\mathrm{n = \left \lfloor 1-\sigma + \sqrt{(\sigma - 1)^2 + 2r)} \right \rfloor}</math>}}


<div {{prettydiv|margin-right=70%}}>'''r = (n/2)(n+2σ-1)'''</div>
<div {{prettydiv|margin-right=70%}}>'''r = (n/2)(n+2σ-1)'''</div>
{{Equation box|<math>\mathrm{r = \biggl(\frac{n^2 + 2n\sigma - n}{2}\biggr)}</math>}}
{{Equation box|<math>\mathrm{r = \left( \frac{n^2 + 2n\sigma - n}{2}\right)}</math>}}


<div {{prettydiv|margin-right=70%}}>'''σ = (1/2)(1+2r/n-n)'''</div>
<div {{prettydiv|margin-right=70%}}>'''σ = (1/2)(1+2r/n-n)'''</div>

Revision as of 05:04, 5 October 2016

Math Code

Proposed math code, please check/correct:

n = trunc[ 1-σ + sqrt[(σ-1)^2+2r] ]
r = (n/2)(n+2σ-1)
σ = (1/2)(1+2r/n-n)

Obviously I didn't go for a direct translation, I tried to do some math. I'm sure it can be improved. VANKRASN39 (talk) 17:52, 4 October 2016 (CDT)